The Evolutionary and Molecular impacts on Human Genetics; Review
The Human Genome Evolution
Keywords:
Human Genome, DNA, Evolution, SNPsAbstract
The human genome holds a record of the evolutionary forces that have shaped our species. In human genome evolution, DNA sequences-genomics analysis, molecular-based analysis, population genetics, molecular genetics, functional genomics, genome function identification/profiling, and genomics modeling, and simulation have deepened our understanding of human genome evolutionary history, natural selection, and other studies. We study, some factors that influence the evolution of the human genome are the functional modification of DNA, post-translational modification (PTM), gene regulation, analysis of chromatin conservation, modification of histone, structural variations, mutational biases, single nucleotide polymorphism (SNPs) and gene-phenotypes interaction along the genome. By using the natural selection and evolutionary theory as study, these some phenomena will play a vital role in the understanding of the human genome and also breakthroughs in in-vivo and in-silico studies.
Downloads
References
Brunet, A., & Berger, S. L. (2014). Epigenetics of aging and aging-related disease. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 69(Suppl_1), S17-S20.
Chuzhanova, N. A., Anassis, E. J., Ball, E. V., Krawczak, M., & Cooper, D. N. (2003). Meta‐analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity. Human mutation, 21(1), 28-44.
Coop, G., & Przeworski, M. (2007). An evolutionary view of human recombination. Nature Reviews Genetics, 8(1), 23-34.
Gibson, G. (2012). Rare and common variants: twenty arguments. Nature Reviews Genetics, 13(2), 135-145.
Gluckman, P., Beedle, A., Buklijas, T., Low, F., & Hanson, M. (2016). Principles of evolutionary medicine: Oxford University Press.
Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell, 157(1), 95-109.
Henn, B. M., Botigué, L. R., Bustamante, C. D., Clark, A. G., & Gravel, S. (2015). Estimating the mutation load in human genomes. Nature Reviews Genetics, 16(6), 333-343.
Lachance, J., & Tishkoff, S. A. (2014). Biased gene conversion skews allele frequencies in human populations, increasing the disease burden of recessive alleles. The American Journal of Human Genetics, 95(4), 408-420.
Lee, S., Abecasis, G. R., Boehnke, M., & Lin, X. (2014). Rare-variant association analysis: study designs and statistical tests. The American Journal of Human Genetics, 95(1), 5-23.
Lynch, V. J., Nnamani, M. C., Kapusta, A., Brayer, K., Plaza, S. L., Mazur, E. C., . . . Bauersachs, S. (2015). Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell reports, 10(4), 551-561.
Melé, M., Ferreira, P. G., Reverter, F., DeLuca, D. S., Monlong, J., Sammeth, M., . . . Sullivan, T. J. (2015). The human transcriptome across tissues and individuals. Science, 348(6235), 660-665.
Montgomery, S. B., Goode, D. L., Kvikstad, E., Albers, C. A., Zhang, Z. D., Mu, X. J., . . . Smith, K. S. (2013). The origin, evolution, and functional impact of short insertion–deletion variants identified in 179 human genomes. Genome research, 23(5), 749-761.
O'bleness, M., Searles, V. B., Varki, A., Gagneux, P., & Sikela, J. M. (2012). Evolution of genetic and genomic features unique to the human lineage. Nature Reviews Genetics, 13(12), 853-866.
Prado-Martinez, J., Sudmant, P. H., Kidd, J. M., Li, H., Kelley, J. L., Lorente-Galdos, B., . . . Santpere, G. (2013). Great ape genetic diversity and population history. Nature, 499(7459), 471-475.
Ptashne, M. (2013). Epigenetics: core misconcept. Proceedings of the National Academy of Sciences, 110(18), 7101-7103.
Sakabe, N. J., Savic, D., & Nobrega, M. A. (2012). Transcriptional enhancers in development and disease. Genome biology, 13(1), 1-11.
Siepel, A., & Arbiza, L. (2014). Cis-regulatory elements and human evolution. Current opinion in genetics & development, 29, 81-89.
Sivakumaran, S., Agakov, F., Theodoratou, E., Prendergast, J. G., Zgaga, L., Manolio, T., . . . Campbell, H. (2011). Abundant pleiotropy in human complex diseases and traits. The American Journal of Human Genetics, 89(5), 607-618.
Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M., & Smoller, J. W. (2013). Pleiotropy in complex traits: challenges and strategies. Nature Reviews Genetics, 14(7), 483-495.
Stankiewicz, P., & Lupski, J. R. (2010). Structural variation in the human genome and its role in disease. Annual review of medicine, 61, 437-455.
Torres, R., Szpiech, Z. A., & Hernandez, R. D. (2018). Human demographic history has amplified the effects of background selection across the genome. PLoS genetics, 14(6), e1007387.
Weirauch, M. T., & Hughes, T. R. (2010). Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. Trends in genetics, 26(2), 66-74.
Wood, A. R., Tuke, M. A., Nalls, M. A., Hernandez, D. G., Bandinelli, S., Singleton, A. B., . . . Weedon, M. N. (2014). Another explanation for apparent epistasis. Nature, 514(7520), E3-E5.
Zhou, V. W., Goren, A., & Bernstein, B. E. (2011). Charting histone modifications and the functional organization of mammalian genomes. Nature Reviews Genetics, 12(1), 7-18.
Published
How to Cite
Issue
Section
Copyright (c) 2021 European journal of volunteering and community-based projects
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.