The in-silico approaches; structural, functional proteins-association elucidation of Moringa oleifera phytochemicals against the tyrosine kinase receptor protein of Diabetes mellitus

The in-silico approaches, elucidation of Moringa oleifera phytochemicals against the tyrosine kinase receptor protein of Diabetes mellitus

Authors

  • Muhammad Mazhar Fareed Government College University Faisalabad
  • Maryam Qasmi Faculty of Life Sciences, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
  • Hira Zaheer Department of Biochemistry, The Islamia University Of Bahawalpur, Pakistan
  • Hira Faculty of Life Sciences, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan

Keywords:

Moringa oleifera,, Screening analysis, phytochemicals, Pharmacokinetics, protein-association

Abstract

The Moringa oleifera also called “Drumstick tree”, to its various pharmacological uses and nutritional adaptability worth is comprehensively all over the earth. The tree parts; stem, bark, gum, roots, and mostly leaves are great provenance of vitamins, minerals, and numerous clinically beneficial secondary-metabolites and also a significant role in diabetic-resistance. The virtual-study may exist significant in terms of expanding the number of successful antidotes derived through this herb and plan to obtain the potent-phytochemicals amalgam of miracle tree even an agent for the curative potential opponent the Diabetes-Mellitus (DM) by computational screening. The structure of the top three selected phytochemicals was extracted from previous works of literature, Drug Bank database, PubChem-database, and screened with mutated protein from PDB structure (Crystal structure of insulin receptor kinase domain in complex with cis-(R)-7-(3-(azetidin-1-ylmethyl) cyclobutyl)-5-(3-((tetrahydro-2H-pyran-2-yl)methoxy)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine) through PyRx-docking tool. After, these three potent compounds: Anthraquinone, Serpentine, and Laurifolin were obtained, which showed successful binding within the targeted protein's active binding pocket; Anthraquinone-chain A: ASP-1177 aa (amino acid-complex) site, Laurifolin-Chain A: ASP-1110 aa, and Serpentine-Chain A: MET-1103 aa. The main features of the pharmacophore model based on ligands were revealed showed i.e. through molinspiration, swiss adme, admetSAR and exhibited acceptable drug-like properties; HBA (4,2,2), HBD (0,2,0), with the potent surface-binding active site: position A: 1159 by CASTp and structural visualized through Chimera Tool, and the protein functional network analysis of INSR Gene-associated with other via INSRR, IRS1, IRS2, SHC1, IGF1, PTPN1, INS, PTPN2, IGF1R, GRB14 of targeted plant Moringa oleifera against DM through STRING Database and gene-regulate expression were analyzed. Our finding proposes that docking potent these phytochemicals and gene functionality in M.oleifera may be utilized as a pharmaceutical candidate for diabetes and further investigate in future research.

Downloads

Download data is not yet available.

References

Adhikari, A., Darbar, S., Das, M., Mondal, S., Bhattacharya, S. S., Pal, D., & Pal, S. K. (2020). Rationalization of a traditional liver medicine using systems biology approach and its evaluation in preclinical trial. Computational Biology and Chemistry, 84, 107196.

Anwar, F., & Bhanger, M. (2003). Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. Journal of Agricultural and food Chemistry, 51(22), 6558-6563.

Anwar, F., Latif, S., Ashraf, M., & Gilani, A. H. (2007). Moringa oleifera: a food plant with multiple medicinal uses. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(1), 17-25.

Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths‐Jones, S., . . . Sonnhammer, E. L. (2004). The Pfam protein families database. Nucleic acids research, 32(suppl_1), D138-D141.

Ben-Ami, R., Berman, J., Novikov, A., Bash, E., Shachor-Meyouhas, Y., Zakin, S., . . . Adler, A. (2017). Multidrug-resistant candida haemulonii and C. auris, Tel Aviv, Israel. Emerging infectious diseases, 23(2), 195.

Chandran, H., Meena, M., Barupal, T., & Sharma, K. (2020). Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnology Reports, e00450.

Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., . . . Tang, Y. (2012). admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties: ACS Publications.

Chhikara, N., Kaur, A., Mann, S., Garg, M., Sofi, S. A., & Panghal, A. (2020). Bioactive compounds, associated health benefits and safety considerations of Moringa oleifera L.: An updated review. Nutrition & Food Science.

Cho, N., Shaw, J., Karuranga, S., Huang, Y., da Rocha Fernandes, J., Ohlrogge, A., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice, 138, 271-281.

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7, 42717.

Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx Chemical biology (pp. 243-250): Springer.

DeLano, W. L. (2002). PyMOL.

Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R., & Preissner, R. (2014). ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic acids research, 42(W1), W53-W58.

Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., & Liang, J. (2006). CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic acids research, 34(suppl_2), W116-W118.

Ehrman, T., Barlow, D., & Hylands, P. (2010). Phytochemical informatics and virtual screening of herbs used in Chinese medicine. Current pharmaceutical design, 16(15), 1785-1798.

Garg, V. K., Avashthi, H., Tiwari, A., Jain, P. A., Ramkete, P. W., Kayastha, A. M., & Singh, V. K. (2016). MFPPI–Multi FASTA ProtParam Interface. Bioinformation, 12(2), 74.

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic acids research, 31(13), 3784-3788.

Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics, 11(6), 681-684.

Kasolo, J. N., Bimenya, G. S., Ojok, L., Ochieng, J., & Ogwal-Okeng, J. (2010). Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities.

Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., . . . Shoemaker, B. A. (2016). PubChem substance and compound databases. Nucleic acids research, 44(D1), D1202-D1213.

Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne, P. E., & Berman, H. M. (2006). The RCSB PDB information portal for structural genomics. Nucleic acids research, 34(suppl_1), D302-D305.

Kumar, P. S., Mishra, D., Ghosh, G., & Panda, C. S. (2010). Medicinal uses and pharmacological properties of Moringa oleifera. International Journal of Phytomedicine, 2(3).

Kumar, S. (2017). Medicinal importance of Moringa oleifera: drumstick plant. Indian J. Sci. Res, 16(1), 129-132.

Kumbhare, M., Guleha, V., & Sivakumar, T. (2012). Estimation of total phenolic content, cytotoxicity and in–vitro antioxidant activity of stem bark of Moringa oleifera. Asian Pacific Journal of Tropical Disease, 2(2), 144-150.

Kustatscher, G., Grabowski, P., Schrader, T. A., Passmore, J. B., Schrader, M., & Rappsilber, J. (2019). Co-regulation map of the human proteome enables identification of protein functions. Nature biotechnology, 37(11), 1361-1371.

Lipinski, C. A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced drug delivery reviews, 101, 34-41.

Liu, Y., Wang, X.-y., Wei, X.-m., Gao, Z.-t., & Han, J.-p. (2018). Values, properties and utility of different parts of Moringa oleifera: An overview. Chinese Herbal Medicines, 10(4), 371-378.

Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I., & Lomize, A. L. (2012). OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic acids research, 40(D1), D370-D376.

Mahmood, K. T., Mugal, T., & Haq, I. U. (2010). Moringa oleifera: a natural gift-A review. Journal of Pharmaceutical Sciences and Research, 2(11), 775.

Mering, C. v., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., & Snel, B. (2003). STRING: a database of predicted functional associations between proteins. Nucleic acids research, 31(1), 258-261.

Morton, J. F. (1991). The horseradish tree, Moringa pterygosperma (Moringaceae)—a boon to arid lands? Economic botany, 45(3), 318-333.

Nepolean, P., Anitha, J., & Emilin, R. (2009). Isolation, analysis and identification of phytochemicals of antimicrobial activity of Moringa oleifera Lam. Current biotica, 3(1), 33-37.

Ogbe, A., & Affiku, J. P. (2021). Proximate study, mineral and anti-nutrient composition of Moringa oleifera leaves harvested from Lafia, Nigeria: potential benefits in poultry nutrition and health. Journal of Microbiology, Biotechnology and food sciences, 2021, 296-308.

Patel, N. B., Patel, L. N., Patel, K. D., Patel, M. V., & Kalasariya, H. S. (2020). ADMET & CYTOTOXICITY PREDICTION OF RED SEAWEED GRACILLARIA DURA: AN IN SILICO APPROACH.

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605-1612.

Rani, E. A., & Arumugam, T. (2017). Moringa oleifera (Lam)–A nutritional powerhouse. Journal of Crop and Weed, 13(2), 238-246.

Reena Roy, D., Kandagalla, S., & Krishnappa, M. (2020). Exploring the ethnomycological potential of Lentinus squarrosulus Mont. through GC–MS and chemoinformatics tools. Mycology, 11(1), 78.

Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., . . . Krug, H. (2010). GeneCards Version 3: the human gene integrator. Database, 2010.

Saini, R. K., Sivanesan, I., & Keum, Y.-S. (2016). Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech, 6(2), 1-14.

Satish, A., Kumar, R. P., Rakshith, D., Satish, S., & Ahmed, F. (2013). Antimutagenic and antioxidant activity of Ficus benghalensis stem bark and Moringa oleifera root extract. International Journal of Chemical and Analytical Science, 4(2), 45-48.

Seth, R. B., Sun, L., Ea, C.-K., & Chen, Z. J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell, 122(5), 669-682.

Studio, D. (2008). Discovery Studio. Accelrys [2.1].

Swaminathan, M., & Ng, M. L. Recent review of herbal medicine for treatment of diabetes and diabetic vascular complications.

Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., . . . Bork, P. (2016). The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic acids research, gkw937.

Ubani, A., Agwom, F., Shehu, N. Y., Luka, P., Umera, E. A., Umar, U., . . . Aguiyi, J. C. (2020). Molecular Docking Analysis Of Some Phytochemicals On Two SARS-CoV-2 Targets. BioRxiv.

Vilar, S., Cozza, G., & Moro, S. (2008). Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Current topics in medicinal chemistry, 8(18), 1555-1572.

Wadapurkar, R. M., Shilpa, M., Katti, A. K. S., & Sulochana, M. (2018). In silico drug design for Staphylococcus aureus and development of host-pathogen interaction network. Informatics in Medicine Unlocked, 10, 58-70.

Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., . . . Hassanali, M. (2008). DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic acids research, 36(suppl_1), D901-D906.

Published

2021-09-30

How to Cite

Fareed, M. M., Qasmi , M. ., Zaheer, H., & Hira. (2021). The in-silico approaches; structural, functional proteins-association elucidation of Moringa oleifera phytochemicals against the tyrosine kinase receptor protein of Diabetes mellitus: The in-silico approaches, elucidation of Moringa oleifera phytochemicals against the tyrosine kinase receptor protein of Diabetes mellitus. European Journal of Volunteering and Community-Based Projects, 1(3), 1-29. Retrieved from https://pkp.odvcasarcobaleno.it/index.php/ejvcbp/article/view/41