The in-silico approaches; structural, functional proteins-association elucidation of Moringa oleifera phytochemicals against the tyrosine kinase receptor protein of Diabetes mellitus
The in-silico approaches, elucidation of Moringa oleifera phytochemicals against the tyrosine kinase receptor protein of Diabetes mellitus
Keywords:
Moringa oleifera,, Screening analysis, phytochemicals, Pharmacokinetics, protein-associationAbstract
The Moringa oleifera also called “Drumstick tree”, to its various pharmacological uses and nutritional adaptability worth is comprehensively all over the earth. The tree parts; stem, bark, gum, roots, and mostly leaves are great provenance of vitamins, minerals, and numerous clinically beneficial secondary-metabolites and also a significant role in diabetic-resistance. The virtual-study may exist significant in terms of expanding the number of successful antidotes derived through this herb and plan to obtain the potent-phytochemicals amalgam of miracle tree even an agent for the curative potential opponent the Diabetes-Mellitus (DM) by computational screening. The structure of the top three selected phytochemicals was extracted from previous works of literature, Drug Bank database, PubChem-database, and screened with mutated protein from PDB structure (Crystal structure of insulin receptor kinase domain in complex with cis-(R)-7-(3-(azetidin-1-ylmethyl) cyclobutyl)-5-(3-((tetrahydro-2H-pyran-2-yl)methoxy)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine) through PyRx-docking tool. After, these three potent compounds: Anthraquinone, Serpentine, and Laurifolin were obtained, which showed successful binding within the targeted protein's active binding pocket; Anthraquinone-chain A: ASP-1177 aa (amino acid-complex) site, Laurifolin-Chain A: ASP-1110 aa, and Serpentine-Chain A: MET-1103 aa. The main features of the pharmacophore model based on ligands were revealed showed i.e. through molinspiration, swiss adme, admetSAR and exhibited acceptable drug-like properties; HBA (4,2,2), HBD (0,2,0), with the potent surface-binding active site: position A: 1159 by CASTp and structural visualized through Chimera Tool, and the protein functional network analysis of INSR Gene-associated with other via INSRR, IRS1, IRS2, SHC1, IGF1, PTPN1, INS, PTPN2, IGF1R, GRB14 of targeted plant Moringa oleifera against DM through STRING Database and gene-regulate expression were analyzed. Our finding proposes that docking potent these phytochemicals and gene functionality in M.oleifera may be utilized as a pharmaceutical candidate for diabetes and further investigate in future research.
Downloads
References
Adhikari, A., Darbar, S., Das, M., Mondal, S., Bhattacharya, S. S., Pal, D., & Pal, S. K. (2020). Rationalization of a traditional liver medicine using systems biology approach and its evaluation in preclinical trial. Computational Biology and Chemistry, 84, 107196.
Anwar, F., & Bhanger, M. (2003). Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. Journal of Agricultural and food Chemistry, 51(22), 6558-6563.
Anwar, F., Latif, S., Ashraf, M., & Gilani, A. H. (2007). Moringa oleifera: a food plant with multiple medicinal uses. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(1), 17-25.
Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths‐Jones, S., . . . Sonnhammer, E. L. (2004). The Pfam protein families database. Nucleic acids research, 32(suppl_1), D138-D141.
Ben-Ami, R., Berman, J., Novikov, A., Bash, E., Shachor-Meyouhas, Y., Zakin, S., . . . Adler, A. (2017). Multidrug-resistant candida haemulonii and C. auris, Tel Aviv, Israel. Emerging infectious diseases, 23(2), 195.
Chandran, H., Meena, M., Barupal, T., & Sharma, K. (2020). Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnology Reports, e00450.
Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., . . . Tang, Y. (2012). admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties: ACS Publications.
Chhikara, N., Kaur, A., Mann, S., Garg, M., Sofi, S. A., & Panghal, A. (2020). Bioactive compounds, associated health benefits and safety considerations of Moringa oleifera L.: An updated review. Nutrition & Food Science.
Cho, N., Shaw, J., Karuranga, S., Huang, Y., da Rocha Fernandes, J., Ohlrogge, A., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice, 138, 271-281.
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7, 42717.
Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx Chemical biology (pp. 243-250): Springer.
DeLano, W. L. (2002). PyMOL.
Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R., & Preissner, R. (2014). ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic acids research, 42(W1), W53-W58.
Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., & Liang, J. (2006). CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic acids research, 34(suppl_2), W116-W118.
Ehrman, T., Barlow, D., & Hylands, P. (2010). Phytochemical informatics and virtual screening of herbs used in Chinese medicine. Current pharmaceutical design, 16(15), 1785-1798.
Garg, V. K., Avashthi, H., Tiwari, A., Jain, P. A., Ramkete, P. W., Kayastha, A. M., & Singh, V. K. (2016). MFPPI–Multi FASTA ProtParam Interface. Bioinformation, 12(2), 74.
Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic acids research, 31(13), 3784-3788.
Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics, 11(6), 681-684.
Kasolo, J. N., Bimenya, G. S., Ojok, L., Ochieng, J., & Ogwal-Okeng, J. (2010). Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities.
Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., . . . Shoemaker, B. A. (2016). PubChem substance and compound databases. Nucleic acids research, 44(D1), D1202-D1213.
Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne, P. E., & Berman, H. M. (2006). The RCSB PDB information portal for structural genomics. Nucleic acids research, 34(suppl_1), D302-D305.
Kumar, P. S., Mishra, D., Ghosh, G., & Panda, C. S. (2010). Medicinal uses and pharmacological properties of Moringa oleifera. International Journal of Phytomedicine, 2(3).
Kumar, S. (2017). Medicinal importance of Moringa oleifera: drumstick plant. Indian J. Sci. Res, 16(1), 129-132.
Kumbhare, M., Guleha, V., & Sivakumar, T. (2012). Estimation of total phenolic content, cytotoxicity and in–vitro antioxidant activity of stem bark of Moringa oleifera. Asian Pacific Journal of Tropical Disease, 2(2), 144-150.
Kustatscher, G., Grabowski, P., Schrader, T. A., Passmore, J. B., Schrader, M., & Rappsilber, J. (2019). Co-regulation map of the human proteome enables identification of protein functions. Nature biotechnology, 37(11), 1361-1371.
Lipinski, C. A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced drug delivery reviews, 101, 34-41.
Liu, Y., Wang, X.-y., Wei, X.-m., Gao, Z.-t., & Han, J.-p. (2018). Values, properties and utility of different parts of Moringa oleifera: An overview. Chinese Herbal Medicines, 10(4), 371-378.
Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I., & Lomize, A. L. (2012). OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic acids research, 40(D1), D370-D376.
Mahmood, K. T., Mugal, T., & Haq, I. U. (2010). Moringa oleifera: a natural gift-A review. Journal of Pharmaceutical Sciences and Research, 2(11), 775.
Mering, C. v., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., & Snel, B. (2003). STRING: a database of predicted functional associations between proteins. Nucleic acids research, 31(1), 258-261.
Morton, J. F. (1991). The horseradish tree, Moringa pterygosperma (Moringaceae)—a boon to arid lands? Economic botany, 45(3), 318-333.
Nepolean, P., Anitha, J., & Emilin, R. (2009). Isolation, analysis and identification of phytochemicals of antimicrobial activity of Moringa oleifera Lam. Current biotica, 3(1), 33-37.
Ogbe, A., & Affiku, J. P. (2021). Proximate study, mineral and anti-nutrient composition of Moringa oleifera leaves harvested from Lafia, Nigeria: potential benefits in poultry nutrition and health. Journal of Microbiology, Biotechnology and food sciences, 2021, 296-308.
Patel, N. B., Patel, L. N., Patel, K. D., Patel, M. V., & Kalasariya, H. S. (2020). ADMET & CYTOTOXICITY PREDICTION OF RED SEAWEED GRACILLARIA DURA: AN IN SILICO APPROACH.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605-1612.
Rani, E. A., & Arumugam, T. (2017). Moringa oleifera (Lam)–A nutritional powerhouse. Journal of Crop and Weed, 13(2), 238-246.
Reena Roy, D., Kandagalla, S., & Krishnappa, M. (2020). Exploring the ethnomycological potential of Lentinus squarrosulus Mont. through GC–MS and chemoinformatics tools. Mycology, 11(1), 78.
Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M., . . . Krug, H. (2010). GeneCards Version 3: the human gene integrator. Database, 2010.
Saini, R. K., Sivanesan, I., & Keum, Y.-S. (2016). Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech, 6(2), 1-14.
Satish, A., Kumar, R. P., Rakshith, D., Satish, S., & Ahmed, F. (2013). Antimutagenic and antioxidant activity of Ficus benghalensis stem bark and Moringa oleifera root extract. International Journal of Chemical and Analytical Science, 4(2), 45-48.
Seth, R. B., Sun, L., Ea, C.-K., & Chen, Z. J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell, 122(5), 669-682.
Studio, D. (2008). Discovery Studio. Accelrys [2.1].
Swaminathan, M., & Ng, M. L. Recent review of herbal medicine for treatment of diabetes and diabetic vascular complications.
Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., . . . Bork, P. (2016). The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic acids research, gkw937.
Ubani, A., Agwom, F., Shehu, N. Y., Luka, P., Umera, E. A., Umar, U., . . . Aguiyi, J. C. (2020). Molecular Docking Analysis Of Some Phytochemicals On Two SARS-CoV-2 Targets. BioRxiv.
Vilar, S., Cozza, G., & Moro, S. (2008). Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Current topics in medicinal chemistry, 8(18), 1555-1572.
Wadapurkar, R. M., Shilpa, M., Katti, A. K. S., & Sulochana, M. (2018). In silico drug design for Staphylococcus aureus and development of host-pathogen interaction network. Informatics in Medicine Unlocked, 10, 58-70.
Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., . . . Hassanali, M. (2008). DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic acids research, 36(suppl_1), D901-D906.
Published
How to Cite
Issue
Section
Copyright (c) 2021 European journal of volunteering and community-based projects
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.