The Immunoinformatic, Structural elucidation of ULBP2 Protein in the therapeutics of Tumorigenesis: Using Bioinformatics Approaches
Immunoinformatic analysis of ULBP2 against the cancer treatment
Keywords:
Cancer, B cell epitope, ULBP2, T cell epitope, bioinformaticsAbstract
The Natural killer (NK) cells' ability to destroy cancerous cells is predominantly focused on the activation of the co-stimulatory and natural killer group two with receptor of member-D also called NKGD2/NKG2D. These identifies ligands that are MHC-Class1 structural homologs like that of the UL16 protein-binding type 2. The ULBP2 has been shown to mediate-natural resistance against the tumors mechanism in the condition of in-vitro, in-vivo, making it a possible target for producing the immune-therapeutic drugs for the diagnosis of the cancers and certain other viral diseases. In this present research, we created a stable and high-quality 3-D structure of the ULBP-2 protein through SWISS-Model also visualized by using UCSF-Chimera Tool. Moreover, the ULBP2 protein was prognosticated to be acts as antigenic, 11-discontinuous-B-Cell epitopes, 05 ULBP2 proteins antibody-based epitopes, and possible predicted the top hits of six linear B-cell epitopes. The ULBP2 protein carried seven cytotoxic-T lymphocytes (CTLs), two helper-T lymphocytes (HTLs), the LGKKLNVTTAWAQN is a promiscuous epitope MHC bounded to the T cells and with LRDIQLENY highest antigen scores in MHC molecule. Finally, the promising epitopes that could be successful in producing B-cell and T-cell mediated immunity against the required immune reaction to tumorigenesis were expected.
Downloads
References
Álvarez, C. A., Gomez, F. A., Mercado, L., Ramírez, R., & Marshall, S. H. (2016). Piscirickettsia salmonis imbalances the innate immune response to succeed in a productive infection in a salmonid cell line model. PloS one, 11(10), e0163943.
Aruleba, R. T., Adekiya, T. A., Oyinloye, B. E., & Kappo, A. P. (2018). Structural studies of predicted ligand binding sites and molecular docking analysis of Slc2a4 as a therapeutic target for the treatment of cancer. International journal of molecular sciences, 19(2), 386.
Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths‐Jones, S., . . . Sonnhammer, E. L. (2004). The Pfam protein families database. Nucleic acids research, 32(suppl_1), D138-D141.
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., . . . Richardson, D. C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 66(1), 12-21.
DeSantis, C. E., Lin, C. C., Mariotto, A. B., Siegel, R. L., Stein, K. D., Kramer, J. L., . . . Jemal, A. (2014). Cancer treatment and survivorship statistics, 2014. CA: a cancer journal for clinicians, 64(4), 252-271.
Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v. 2—a server for in silico prediction of allergens. Journal of molecular modeling, 20(6), 1-6.
Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC bioinformatics, 8(1), 1-7.
EL‐Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B‐cell epitopes using string kernels. Journal of Molecular Recognition: An Interdisciplinary Journal, 21(4), 243-255.
Fleri, W., Paul, S., Dhanda, S. K., Mahajan, S., Xu, X., Peters, B., & Sette, A. (2017). The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Frontiers in immunology, 8, 278.
Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic acids research, 31(13), 3784-3788.
Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics, 11(6), 681-684.
Haste Andersen, P., Nielsen, M., & Lund, O. (2006). Prediction of residues in discontinuous B‐cell epitopes using protein 3D structures. Protein Science, 15(11), 2558-2567.
Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific reports, 7(1), 1-12.
Kumar, B., Yadav, P., Goel, H., & Rizvi, M. (2009). RECENT DEVELOPMENTS IN CANCER THERAPY BY THE USE OF NANOTECHNOLOGY. Digest Journal of Nanomaterials & Biostructures (DJNB), 4(1).
Li, K., Mandai, M., Hamanishi, J., Matsumura, N., Suzuki, A., Yagi, H., . . . Konishi, I. (2009). Clinical significance of the NKG2D ligands, MICA/B and ULBP2 in ovarian cancer: high expression of ULBP2 is an indicator of poor prognosis. Cancer immunology, immunotherapy, 58(5), 641-652.
Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I., & Lomize, A. L. (2012). OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic acids research, 40(D1), D370-D376.
Ma, X., & Yu, H. (2006). Cancer issue: global burden of cancer. The Yale journal of biology and medicine, 79(3-4), 85.
Marcus, A., Gowen, B. G., Thompson, T. W., Iannello, A., Ardolino, M., Deng, W., . . . Raulet, D. H. (2014). Recognition of tumors by the innate immune system and natural killer cells. Advances in immunology, 122, 91-128.
McGilvray, R. W., Eagle, R. A., Rolland, P., Jafferji, I., Trowsdale, J., & Durrant, L. G. (2010). ULBP2 and RAET1E NKG2D ligands are independent predictors of poor prognosis in ovarian cancer patients. International journal of cancer, 127(6), 1412-1420.
Mistry, A. R., & O'Callaghan, C. A. (2007). Regulation of ligands for the activating receptor NKG2D. Immunology, 121(4), 439-447.
Oyinloye, B. E., Adekiya, T. A., Aruleba, R. T., Ojo, O. A., & Ajiboye, B. O. (2019). Structure-based docking studies of GLUT4 towards exploring selected phytochemicals from Solanum xanthocarpum as a therapeutic target for the treatment of cancer. Current drug discovery technologies, 16(4), 406-416.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605-1612.
Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC bioinformatics, 9(1), 1-8.
Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W., & Jung, H. (2013). Regulation of ligands for the NKG2D activating receptor. Annual review of immunology, 31, 413-441.
Russell, B. L., Parbhoo, N., & Gildenhuys, S. (2018). Analysis of conserved, computationally predicted epitope regions for VP5 and VP7 across three orbiviruses. Bioinformatics and biology insights, 12, 1177932218755348.
Russi, R. C., Bourdin, E., García, M. I., & Veaute, C. M. I. (2018). In silico prediction of T-and B-cell epitopes in PmpD: First step towards to the design of a Chlamydia trachomatis vaccine. biomedical journal, 41(2), 109-117.
Scholz, E. M., Marcilla, M., Daura, X., Arribas-Layton, D., James, E. A., & Alvarez, I. (2017). Human leukocyte antigen (HLA)-DRB1* 15: 01 and HLA-DRB5* 01: 01 present complementary peptide repertoires. Frontiers in immunology, 8, 984.
Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic acids research, 31(13), 3381-3385.
Sefid, F., Rasooli, I., Jahangiri, A., & Bazmara, H. (2015). Functional exposed amino acids of BauA as potential immunogen against Acinetobacter baumannii. Acta biotheoretica, 63(2), 129-149.
Shulman, L. N., & Mok, T. (2015). Special Issue on Global Cancer Medicine. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 34(1), 1-2.
Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., . . . Bork, P. (2016). The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic acids research, gkw937.
Vangrevelinghe, E., Zimmermann, K., Schoepfer, J., Portmann, R., Fabbro, D., & Furet, P. (2003). Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. Journal of medicinal chemistry, 46(13), 2656-2662.
Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic acids research, 35(suppl_2), W407-W410.
Yao, B., Zhang, L., Liang, S., & Zhang, C. (2012). SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PloS one, 7(9), e45152.
Yao, B., Zheng, D., Liang, S., & Zhang, C. (2013). Conformational B-cell epitope prediction on antigen protein structures: a review of current algorithms and comparison with common binding site prediction methods. PloS one, 8(4), e62249.
Published
How to Cite
Issue
Section
Copyright (c) 2021 European journal of volunteering and community-based projects
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.