The Immunoinformatic, Structural elucidation of ULBP2 Protein in the therapeutics of Tumorigenesis: Using Bioinformatics Approaches

Immunoinformatic analysis of ULBP2 against the cancer treatment


  • Muhammad Mazhar Fareed Government College University Faisalabad
  • Khazeema Yousaf Department of Biotechnology, Lahore College for Women University
  • Muhammad Salman Akber Faculty of Life Sciences, Department of Bioinformatics and Biotechnology, Government College University
  • Muhammad Mohsin Ali Faculty of Medical Sciences, Department of Physical therapy, Government College University Faisalabad, Pakistan


Cancer, B cell epitope, ULBP2, T cell epitope, bioinformatics


The Natural killer (NK) cells' ability to destroy cancerous cells is predominantly focused on the activation of the co-stimulatory and natural killer group two with receptor of member-D also called NKGD2/NKG2D. These identifies ligands that are MHC-Class1 structural homologs like that of the UL16 protein-binding type 2. The ULBP2 has been shown to mediate-natural resistance against the tumors mechanism in the condition of in-vitro, in-vivo, making it a possible target for producing the immune-therapeutic drugs for the diagnosis of the cancers and certain other viral diseases. In this present research, we created a stable and high-quality 3-D structure of the ULBP-2 protein through SWISS-Model also visualized by using UCSF-Chimera Tool. Moreover, the ULBP2 protein was prognosticated to be acts as antigenic, 11-discontinuous-B-Cell epitopes, 05 ULBP2 proteins antibody-based epitopes, and possible predicted the top hits of six linear B-cell epitopes. The ULBP2 protein carried seven cytotoxic-T lymphocytes (CTLs), two helper-T lymphocytes (HTLs), the LGKKLNVTTAWAQN is a promiscuous epitope MHC bounded to the T cells and with LRDIQLENY highest antigen scores in MHC molecule. Finally, the promising epitopes that could be successful in producing B-cell and T-cell mediated immunity against the required immune reaction to tumorigenesis were expected.


Download data is not yet available.


Álvarez, C. A., Gomez, F. A., Mercado, L., Ramírez, R., & Marshall, S. H. (2016). Piscirickettsia salmonis imbalances the innate immune response to succeed in a productive infection in a salmonid cell line model. PloS one, 11(10), e0163943.

Aruleba, R. T., Adekiya, T. A., Oyinloye, B. E., & Kappo, A. P. (2018). Structural studies of predicted ligand binding sites and molecular docking analysis of Slc2a4 as a therapeutic target for the treatment of cancer. International journal of molecular sciences, 19(2), 386.

Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths‐Jones, S., . . . Sonnhammer, E. L. (2004). The Pfam protein families database. Nucleic acids research, 32(suppl_1), D138-D141.

Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., . . . Richardson, D. C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 66(1), 12-21.

DeSantis, C. E., Lin, C. C., Mariotto, A. B., Siegel, R. L., Stein, K. D., Kramer, J. L., . . . Jemal, A. (2014). Cancer treatment and survivorship statistics, 2014. CA: a cancer journal for clinicians, 64(4), 252-271.

Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v. 2—a server for in silico prediction of allergens. Journal of molecular modeling, 20(6), 1-6.

Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC bioinformatics, 8(1), 1-7.

EL‐Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B‐cell epitopes using string kernels. Journal of Molecular Recognition: An Interdisciplinary Journal, 21(4), 243-255.

Fleri, W., Paul, S., Dhanda, S. K., Mahajan, S., Xu, X., Peters, B., & Sette, A. (2017). The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Frontiers in immunology, 8, 278.

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic acids research, 31(13), 3784-3788.

Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics, 11(6), 681-684.

Haste Andersen, P., Nielsen, M., & Lund, O. (2006). Prediction of residues in discontinuous B‐cell epitopes using protein 3D structures. Protein Science, 15(11), 2558-2567.

Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific reports, 7(1), 1-12.

Kumar, B., Yadav, P., Goel, H., & Rizvi, M. (2009). RECENT DEVELOPMENTS IN CANCER THERAPY BY THE USE OF NANOTECHNOLOGY. Digest Journal of Nanomaterials & Biostructures (DJNB), 4(1).

Li, K., Mandai, M., Hamanishi, J., Matsumura, N., Suzuki, A., Yagi, H., . . . Konishi, I. (2009). Clinical significance of the NKG2D ligands, MICA/B and ULBP2 in ovarian cancer: high expression of ULBP2 is an indicator of poor prognosis. Cancer immunology, immunotherapy, 58(5), 641-652.

Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I., & Lomize, A. L. (2012). OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic acids research, 40(D1), D370-D376.

Ma, X., & Yu, H. (2006). Cancer issue: global burden of cancer. The Yale journal of biology and medicine, 79(3-4), 85.

Marcus, A., Gowen, B. G., Thompson, T. W., Iannello, A., Ardolino, M., Deng, W., . . . Raulet, D. H. (2014). Recognition of tumors by the innate immune system and natural killer cells. Advances in immunology, 122, 91-128.

McGilvray, R. W., Eagle, R. A., Rolland, P., Jafferji, I., Trowsdale, J., & Durrant, L. G. (2010). ULBP2 and RAET1E NKG2D ligands are independent predictors of poor prognosis in ovarian cancer patients. International journal of cancer, 127(6), 1412-1420.

Mistry, A. R., & O'Callaghan, C. A. (2007). Regulation of ligands for the activating receptor NKG2D. Immunology, 121(4), 439-447.

Oyinloye, B. E., Adekiya, T. A., Aruleba, R. T., Ojo, O. A., & Ajiboye, B. O. (2019). Structure-based docking studies of GLUT4 towards exploring selected phytochemicals from Solanum xanthocarpum as a therapeutic target for the treatment of cancer. Current drug discovery technologies, 16(4), 406-416.

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605-1612.

Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC bioinformatics, 9(1), 1-8.

Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W., & Jung, H. (2013). Regulation of ligands for the NKG2D activating receptor. Annual review of immunology, 31, 413-441.

Russell, B. L., Parbhoo, N., & Gildenhuys, S. (2018). Analysis of conserved, computationally predicted epitope regions for VP5 and VP7 across three orbiviruses. Bioinformatics and biology insights, 12, 1177932218755348.

Russi, R. C., Bourdin, E., García, M. I., & Veaute, C. M. I. (2018). In silico prediction of T-and B-cell epitopes in PmpD: First step towards to the design of a Chlamydia trachomatis vaccine. biomedical journal, 41(2), 109-117.

Scholz, E. M., Marcilla, M., Daura, X., Arribas-Layton, D., James, E. A., & Alvarez, I. (2017). Human leukocyte antigen (HLA)-DRB1* 15: 01 and HLA-DRB5* 01: 01 present complementary peptide repertoires. Frontiers in immunology, 8, 984.

Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic acids research, 31(13), 3381-3385.

Sefid, F., Rasooli, I., Jahangiri, A., & Bazmara, H. (2015). Functional exposed amino acids of BauA as potential immunogen against Acinetobacter baumannii. Acta biotheoretica, 63(2), 129-149.

Shulman, L. N., & Mok, T. (2015). Special Issue on Global Cancer Medicine. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 34(1), 1-2.

Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., . . . Bork, P. (2016). The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic acids research, gkw937.

Vangrevelinghe, E., Zimmermann, K., Schoepfer, J., Portmann, R., Fabbro, D., & Furet, P. (2003). Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. Journal of medicinal chemistry, 46(13), 2656-2662.

Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic acids research, 35(suppl_2), W407-W410.

Yao, B., Zhang, L., Liang, S., & Zhang, C. (2012). SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PloS one, 7(9), e45152.

Yao, B., Zheng, D., Liang, S., & Zhang, C. (2013). Conformational B-cell epitope prediction on antigen protein structures: a review of current algorithms and comparison with common binding site prediction methods. PloS one, 8(4), e62249.



How to Cite

Fareed, M. M., Yousaf, K. ., Salman Akber, M. ., & Mohsin Ali, M. . (2021). The Immunoinformatic, Structural elucidation of ULBP2 Protein in the therapeutics of Tumorigenesis: Using Bioinformatics Approaches : Immunoinformatic analysis of ULBP2 against the cancer treatment . European Journal of Volunteering and Community-Based Projects, 1(2), 1-16. Retrieved from